Занулениемназывается преднамеренное электрическое соединение металлических нетоковедущих частей электроустановки с глухозаземлённой нейтралью обмотки источника тока в 3-х фазных сетях с глухозаземлённой нейтралью, которые могут оказаться под напряжением в результате пробоя изоляции фазного провода на корпус.

Проводник, обеспечивающий указанные соединения зануляемых частей с глухозаземлённой нейтралью источника называется нулевым защитным проводником.

Нулевой защитный проводник отличается от нулевого рабочего проводника, который также соединён с глухозаземлённой нейцтральной точкой источника. Он предназначен для питания рабочим током электроприёмника.

Нулевой рабочий проводник, как правило, имеет изоляцию, равноценную изоляции фазных проводников, а сечение его рассчитывается на длительное прохождение рабочего тока.

Защитное зануление применяют в 3 х фазных сетях до 1 кВ с глухозаземленной нейтралью.

Принципиальная схема зануления представлена на рис. 4.5.

Рис.4.5. Принципиальная схема защитного зануления в сети с глухозаземлённой нейтралью.

1 – корпус потребителя электроэнергии;

Rо – сопротивление заземления нейтрали источника тока;

Rт сопротивление повторного заземления нулевого защитного проводника;

ВА – автоматический выключатель с защитой.

Основное назначение защитного зануления – устранение опасности поражения электрическим током в случае прикосновения к корпусу и другим нетоковедущим металлическим частям электроустановки, оказавшейся под напряжением вследствие замыкания на корпус за счёт быстрого отключения электроустановки от сети действием защиты.

Однако, поскольку корпус оказывается заземленным через нулевой защитный проводник, в аварийный период (с момента возникновения замыкания на корпус до отключения электроустановки от сети защитой) будет проявляться защитное свойство заземления.

Принцип действия защитного зануления основан на превращении замыкания на корпус в однофазное к.з. с целью вызвать большой ток, способный обеспечить срабатывание защиты и тем самым отключить поврежденную электроустановку от сети.

Нулевой защитный проводник в схеме защитного заземления предназначен для создания тока однофазного к.з. цепи с малым сопротивлением, чтобы этот ток был достаточным для быстрого срабатывания защиты (т.е. быстрого отключения поврежденной электроустановки от питающей сети).

Учитывая, что занулённые корпуса заземлены через нулевой защитный проводник, в аварийный период проявляются защитные свойства этого заземления — снижается напряжение на корпусе относительно земли.

Таким образом, зануление осуществляет два защитных действия: быстрое автоматическое отключение повреждённой электроустановки от питающей сети и снижение напряжения занулённых металлических нетоковедущих частей, оказавшихся под напряжением, относительно земли.

Рассмотрим на рис. 4.6 схему без нулевого защитного провода, роль которого выполняет земля (т.е. схема защитного заземления в сети с глухозаземленной нейтралью).

Рис. 4.6. К вопросу о необходимости нулевого защитного проводника в 3-х фазной сети до 1 кВ с заземлённой нейтралью.

При замыкании фазы на корпус в цепи, образовавшейся через землю будет проходить ток:

(4.3)

благодаря которому на корпусе относительно земли возникает напряжение:

(4.4)

фазное напряжение, В

сопротивление заземлений нейтрали и корпуса, Ом.

Сопротивление обмотки трансформатора источника питания и проводов сети малы по сравнению с R0 и Rз и их в расчёт можно не принимать.

Ток Iз может оказаться недостаточным, чтобы вызвать срабатывание защиты и электроустановка может не отключиться.

Например, при Uф=220 В и R0 = Rз=4 Ом, ток, проходящий через землю, будет равен:

,

а напряжение корпуса относительно земли:

Если ток срабатывания защиты больше 27,5А, то отключения не произойдет и корпус будет находиться под напряжением 110В до тех пор, пока установку не отключат вручную.

Безусловно, при этом возникает угроза поражения людей электрическим током в случае прикосновения к повреждённому оборудованию. Ток через тело человека в этом случае будет равен:

Чтобы устранить эту опасность необходимо обеспечить автоматическое отключение электроустановки, т.е. увеличить ток до величины Iз>Ic.з., что достигается уменьшением сопротивления цепи за счёт введения в схему защитного нулевого провода с малым сопротивлением.

Согласно ПУЭ нулевой защитный проводник должен иметь проводимость не меньше половины проводимости фазного провода. В этом случае ток однофазного к.з. будет достаточным для быстрого отключения поврежденной электроустановки.

Таким образом, в 3 х фазной сети до 1 кВ с заземленной нейтралью без нулевого защитного проводника невозможно обеспечить безопасность при замыкании на корпус, поэтому такую сеть применять запрещается.

Заземление нейтрали предназначено для снижения до безопасного значения напряжения относительно земли нулевого защитного проводника (и всех присоединенных к нему корпусов электрооборудования) при случайном замыкании фазы на землю.

В 4 х проводной сети с изолированной нейтралью при случайном замыкании фазы на землю между нулевым защитным проводом и землёй (рис. 4.7), а следовательно, между каждым зануленным корпусом и землей, возникает напряжение Uк, близкое к значению Uф. Например, при Uф=220В, Uк220В. Что является весьма опасным.

Рис. 4.7. Замыкание фазы на землю в 3-х фазной четырёхпроводной сети до1 кВ с изолированной нейтралью.

В сети с заземленной нейтралью (рис. 4.8) при таком повреждении будет обеспечиваться безопасность, так как при замыкании фазы на землю фазное напряжение Uф разделится пропорционально сопротивлениямRзм(сопротивления замыкания фазы на землю) иRо(сопротивление заземления нейтрали), благодаря чему напряжение между зануленным оборудованием и землейUкснизится и будет равно:

(4.5)

ток замыкания на землю фазы

Рис. 4.8. Замыкание фазы на землю в 3-х фазной четырёхпроводной сети до 1 кВ с заземлённой нейтралью.

Как правило, сопротивление, которое оказывает грунт току замыкания фазы на землю Rзм, во много раз больше сопротивления заземления нейтралиR0. ПоэтомуUкоказывается незначительным.

Например, при Uф=220В, R0 =4 Ом, Rзм=100 Ом

При таком напряжении прикосновение к корпусу неопасно.

Очевидно 3 х фазная четырехпроводная сеть с изолированной нетралью имеет опасность поражения электрическим током и применяться не должна.

Для уменьшения опасности поражения людей электрическим током в случаях обрыва нулевого защитного проводника и замыкания фазного проводника на корпус применяют повторное заземление нулевого защитного проводника.

При случайном обрыве нулевого защитного провода и замыкании фазы на корпус (за местом обрыва) отсутствие повторного заземления приведёт к тому, что напряжение относительно земли оборванного участка нулевого защитного провода и всех присоединенных к нему корпусов окажется равным фазному напряжению сети (Uф) (рис. 4.9, а).

Рис. 4.9. Замыкание фазы на корпус при обрыве нулевого защитного проводника:

а) в сети без повторного заземления нулевого защитного проводника;

б) в сети с повторным заземлением нулевого защитного проводника.

Это напряжение опасное для человека будет существовать длительно, поскольку поврежденная электроустановка не будет отключаться от защиты, а обрыв нулевого проводника трудно обнаружить, чтобы отключить вручную.

Если же нулевой защитный проводник будет иметь повторное заземление, то при его обрыве сохранится цепь тока Iзчерез землю (рис. 4.9, б), а напряжение прикосновения на корпусе относительно земли за местом обрыва снизится до назначения:

(4.6)

ток, проходящий через землю

сопротивление повторного заземления нулевого защитного провода

Корпуса электрооборудования, присоединенные к нулевому защитному проводнику до места обрыва также окажутся под напряжением относительно земли:

Сумма Uк и U0равны фазному напряжению:

Uк + U0= Uф

Если Rо= Rn, то корпуса, присоединенные к нулевому защитному проводу, как до, так и после обрыва, будут иметь одинаковый потенциал:

Uк = U0=0,5Uф

Этот случай является наименее опасным, так как при других соотношениях R0 и Rn часть корпусов будет находиться под напряжением большим 0,5Uф, а другая часть корпусов под напряжением меньшим 0,5Uф.

Поэтому повторное заземление значительно уменьшает опасность поражения электрическим током, возникающую при обрыве нулевого защитного проводника, но не может обеспечить условий безопасности, которые существовали до обрыва.

В сети, где применяется защитное зануление, запрещается заземлять корпус электроприемника, не присоединив его к нулевому защитному проводу.

Объясняется это тем, что в случае замыкания фазы на заземленный, но не присоединенный к нулевому защитному проводнику корпус электрооборудования (рис. 4.14), образуется цепь тока Iз через сопротивление заземления этого корпуса Rз и сопротивление нейтрали источника тока R0.

Рис. 4.10. Схема, поясняющая недопустимость заземления и зануления разных корпусов электрооборудования в одной сети.

В результате между этим корпусом и землей возникает напряжение:

Uк = IзRз

Одновременно возникает напряжение между нулевым защитным проводником и землей (между всеми корпусами присоединенными к нулевому защитному проводнику и землей):

U0= IзR0

При Rз= Rо, Uк и U0 будут одинаковыми и равными половине фазного напряжения.

Например, в сети с Uф=220В напряжение между каждым корпусом и землёй будет равно 110В.

Указанные напряжения могут существовать длительно, пока электроустановка не будет отключена от сети вручную, т.к. защита из‑за малого значения тока Iз может не сработать.

Следует отметить, что одновременное заземление и зануление одного и того же корпуса наоборот улучшает условия безопасности, т.к. создаёт дополнительное заземление нулевого проводника.

При замыканиях на корпус зануление создает цепь однофазного короткого замыкания. В результате срабатывает максимально-токовая защита (МТЗ) и аварийный участок цепи отключается от сети. Кроме того, до срабатывания ток к.з. вызывает перераспределение напряжений в сети и, как следствие, снижение напряжения аварийного корпуса относительно цепи (снижается напряжение прикосновения). Быстродействием МТЗ определяется время воздействия поражающего фактора опасности. (Чем меньше время срабатывания защиты, тем меньше опасность поражения человека при прикосновении к зануленному аварийному корпусу).

При замыкании на зануленный корпус в цепи одного из фазных проводов возникает ток короткого замыкания (Iк). Этот ток определяется фазным напряжением источника питания (U), сопротивлением цепи фазного (Zф) и нулеваго (Zн) проводов:

Сопротивление цепи «фаза-нуль» Zф+Zн выражается комплексными величинами. Это объясняется тем, что при протекании больших токов при надлежащем выполнении зануления Iк должен превышать Iср и тем самым обеспечить срабатывание максимальной токовой защиты и, следовательно, безопасность людей имеющих контакт с зануленным электрооборудованием.

Зануление как и защитное заземление, необходимо выполнять в следующих случаях:

в помещениях с повышенной опасностью и особо опасных в отношении поражения электрическим током, а также вне помещений при напряжении электроустановок выше 42 В переменного и 110 В постоянного тока;

в помещениях без повышенной опасности при напряжении электроустановок 380 В и выше переменного и 440 В и выше постоянного тока;

во взрывоопасных зонах независимо от напряжения электроустановок (в том числе до 42 В переменного и до 110 В постоянного тока).

Зануление корпусов переносных электроприёмников осуществляется специальной жилой, находящейся в одной оболочке с фазными жилами питающего кабеля и соединяющей корпус электроприёмника с нулевым защитным проводником питающей линии.

Присоединять корпуса переносных электроприёмников к нулевому рабочему проводу линии недопустимо, так как в случае его обрыва все корпуса, присоединённые окажутся под фазным напряжением относительно земли.

Рис. 4.11. Зануление переносного однофазного электроприёмника, включенного между фазами и нулевым рабочим проводами.

а – правильно; б — неправильно

Если нулевой рабочий провод линии является одновременно нулевым защитным, то присоединение к нему корпусов электрооборудования должно выполняться отдельным проводником. Запрещается использовать для жтой цели нулевой рабочий проводник, идущий в электроприёмник, т.к. при случайном его обрыве корпус окажется под фазным напряжением.

Рис. 4.12. Зануление переносного однофазного электроприёмника, включенного между фазами проводом и нулевым рабочим, являющимся одновременно нулевым защитным проводником:

а – правильно; б — неправильно

ПУЭ нормируют максимальные значения сопротивлений заземляющих устройств:

в электроустановках напряжением выше 1 кВ в сетях с эффективно заземленной нейтралью сопротивление заземляющего устройствав любое время года должно быть не более 0,5 Ом.

в электроустановках напряжением выше 1 кВ в сетях с изолированной нейтралью должно быть R 250/I, Ом, но не более 10 Ом, где I –расчетный ток замыкания на землю, А.

в электроустановках напряжением до 1 кВ в сетях с глухозаземленной нейтралью сопротивление заземляющего устройства, к которым присоединены нейтрали генератора или трансформатора в любое время года должно быть не более 2, 4 и 8 Ом соответственно при линейных напряжениях 660, 380 и 220 В источника 3-х фазного тока или 380, 220 и 127 В источника однофазного тока.

В электроустановках напряжением до 1 кВ в сетях с изолированной нейтралью сопротивление заземляющего устройства используемого для защитного заземления открытых проводящих частей в системе IT должно быть

Как выяснилось заземление играет большую роль в построении электрических схем внутри зданий!
Предлагаю разместить в этой теме информацию по правилам и особенностям построения цепей защиты от нештатных ситуаций при эксплуталии энерго потребителей.
Все у кого есть инфы по УЗО, ДИФ автоматам, контурам заземления кидать сюда.

  • Просмотр профиля
  • Личное сообщение

В таком случае предлагаю сюда размещать только ссылки, а комментарии к ним ёмкие, в противном случае из темы получится ничто .
Можно завести опросник, в котором голосовать за ссылку (одобряю или неодобряю).

  • Просмотр профиля
  • Личное сообщение

я на это и расчитываю. только проверенные данные и доступным языком из уст людей знающих дело!

  • Просмотр профиля
  • Личное сообщение

_________________________________________________________________________
Частные вопросы и обсуждения перемещаются в тему

  • Просмотр профиля
  • Личное сообщение

— Технические средства защиты от поражения электрическим током, Часть1
Описание что такое заземление, для чего нужно и как оно работает. Показана недопустимость локального заземления без зануления и устаноки УЗО в установках с глухим заземлением нейтрали, и тривиального заземления на трубопроводы.

— Технические средства защиты от поражения электрическим током, Часть2
Описание что такое зануление, как оно работает.
Сомнителен вывод «Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин — заземление.»
Хотя, если под «процессом зануления и защитного заземления» понимать процесс прикручивания защитного проводника к шине, а не физические процессы при аварии, то все становится на свои места.

— «Мифы о заземлении и UPS»
В статье показана недопустимость использования локального заземления в сети с глухим заземлением нейтрали. Правда, авторы забыли про УЗО. С обязательным применением УЗО такая схема (TT) вполне имеет право на существование (когда невозможно и/или опасно зануление по системе TN-C-S, например, в дачных поселках с ВЛ в неудовлетворительном стостоянии).

  • Просмотр профиля
  • Личное сообщение

Kamikaze написал :
Сомнителен вывод «Таким образом, в реальных производственных условиях процессы зануления и защитного заземления одинаковы и заключаются в соединении металлических нетоковедущих частей с шиной заземления. Поэтому на практике используется обычно только один термин — заземление.»

  • Это мнение квалифицированных специалистов,данное в авторитетном специализированном издании, приятно, что Вы ТОЖЕ так считаете
  • а ссылку на свое особое мнение тоже можете разместить. отдельно

    (СП31-110-2003)

  • Просмотр профиля
  • Личное сообщение

Термины и определения

ПУЭ-7:
1.7.5. Глухозаземленная нейтраль — нейтраль трансформатора или генератора, присоединенная непосредственно к заземляющему устройству. Глухозаземленным может быть также вывод источника однофазного переменного тока или полюс источника постоянного тока в двухпроводных сетях, а также средняя точка в трехпроводных сетях постоянного тока.
1.7.7. Проводящая часть — часть, которая может проводить электрический ток.
1.7.8. Токоведущая часть — проводящая часть электроустановки, находящаяся в процессе ее работы под рабочим напряжением, в том числе нулевой рабочий проводник (но не PEN-проводник).
1.7.9. Открытая проводящая часть — доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции.
1.7.10. Сторонняя проводящая часть — проводящая часть, не являющаяся частью электроустановки.
1.7.11. Прямое прикосновение — электрический контакт людей или животных с токоведущими частями, находящимися под напряжением.
1.7.12. Косвенное прикосновение — электрический контакт людей или животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции.
1.7.13. Защита от прямого прикосновения — защита для предотвращения прикосновения к токоведущим частям, находящимся под напряжением.
1.7.14. Защита при косвенном прикосновении — защита от поражения электрическим током при прикосновении к открытым проводящим частям, оказавшимся под напряжением при повреждении изоляции.
Термин повреждение изоляции следует понимать как единственное повреждение изоляции.
1.7.15. Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.
1.7.16. Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления.
1.7.17. Естественный заземлитель — сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.
1.7.109. В качестве естественных заземлителей могут быть использованы:
1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;
2) металлические трубы водопровода, проложенные в земле;
3) обсадные трубы буровых скважин;
4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т. п.;
5) рельсовые пути магистральных неэлектрифицированных железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;
6) другие находящиеся в земле металлические конструкции и сооружения;
7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.
1.7.110. Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с 1.7.82.
Не следует использовать в качестве заземлителей железобетонные конструкции зданий и сооружений с предварительно напряженной арматурой, однако это ограничение не распространяется на опоры ВЛ и опорные конструкции ОРУ.
Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций, приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность использования фундаментов в сильноагрессивных средах должны быть определены расчетом.

1.7.18. Заземляющий проводник — проводник, соединяющий заземляемую часть (точку) с заземлителем.
1.7.19. Заземляющее устройство — совокупность заземлителя и заземляющих проводников.
1.7.28. Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.
1.7.29. Защитное заземление — заземление, выполняемое в целях электробезопасности.

1.7.31. Защитное занулени е в электроустановках напряжением до 1 кВ — преднамеренное соединение открытых проводящих частей с глухозаземленной нейтралью трансформатора в сетях трехфазного тока, выполняемое в целях электробезопасности.
1.7.32. Уравнивание потенциалов — электрическое соединение проводящих частей для достижения равенства их потенциалов.
Защитное уравнивание потенциалов — уравнивание потенциалов, выполняемое в целях электробезопасности.
Термин уравнивание потенциалов, используемый в главе , следует понимать как защитное уравнивание потенциалов.

1.7.34. Защитный (РЕ) проводник — проводник, предназначенный для целей электробезопасности.
Защитный заземляющий проводник — защитный проводник, предназначенный для защитного заземления.
Защитный проводник уравнивания потенциалов — защитный проводник, предназначенный для защитного уравнивания потенциалов.
Нулевой защитный проводник — защитный проводник в электроустановках до 1 кВ, предназначенный для присоединения открытых проводящих частей к глухозаземленной нейтрали источника питания.
1.7.35. Нулевой рабочий (нейтральный) проводник (N) — проводник в электроустановках до 1 кВ, предназначенный для питания электроприемников и соединенный с глухозаземленной нейтралью генератора или трансформатора в сетях трехфазного тока, с глухозаземленным выводом источника однофазного тока, с глухозаземленной точкой источника в сетях постоянного тока.
1.7.36. Совмещенные нулевой защитный и нулевой рабочий (PEN) проводники — проводники в электроустановках напряжением до 1 кВ, совмещающие функции нулевого защитного и нулевого рабочего проводников.
1.7.37. Главная заземляющая шина — шина, являющаяся частью заземляющего устройства электроустановки до 1 кВ и предназначенная для присоединения нескольких проводников с целью заземления и уравнивания потенциалов.
1.7.38. Защитное автоматическое отключение питания — автоматическое размыкание цепи одного или нескольких фазных проводников (и, если требуется, нулевого рабочего проводника), выполняемое в целях электробезопасности.

Часто применяемые сокращения:

КТП – комплектная трансформаторная подстанция. На практике источником питания всех домов (кроме случаев питания от автономного генератора) является именно КТП.
ВЛ – воздушная линия электроперередачи 220/380В. При бОльших напряжениях обычно применяют аббревиатуру ЛЭП.
СИП – самонесущий изолированный провод.
ВЛИ – ВЛ, выполненная СИП.
ЗУ – заземляющее устройство.
ГЗШ — главная заземляющая шина.
СУП — система уравнивания потенциалов.
ДСУП – дополнительная система уравнивания потенциалов.
КУП — коробка уравнивания потенциалов, применяется для устройства ДСУП в квартирах, например, в ванных комнатах.
АВ – автоматический выключатель (автомат).
ТР – тепловой расцепитель (автомата).
ЭмР – электромагнитный расцепитель (автомата).
УЗО – устройство защитного отключения.
КЗ – короткое замыкание.
ТКЗ – ток короткого замыкания.
ВУ – вводное устройство — «первый щиток на вводе питающей линии в дом».
ГРЩ – главный распределительный щит (здания).
ВРУ – вводно-распределительное устр-во — «ВУ+ГРЩ в одном флаконе».
ПУМ – прямой удар молнии.

7.1.3. Вводное устройство (ВУ) — совокупность конструкций, аппаратов и приборов, устанавливаемых на вводе питающей линии в здание или в его обособленную часть.
Вводное устройство, включающее в себя также аппараты и приборы отходящих линий, называется вводно-распределительным (ВРУ).
7.1.4. Главный распределительный щит (ГРЩ) — распределительный щит, через который снабжается электроэнергией все здание или его обособленная часть. Роль ГРЩ может выполнять ВРУ или щит низкого напряжения подстанции.
7.1.5. Распределительный пункт (РП) —устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных электроприемников или их групп (электродвигателей, групповых щитков).
7.1.6. Групповой щиток — устройство, в котором установлены аппараты защиты и коммутационные аппараты (или только аппараты защиты) для отдельных групп светильников, штепсельных розеток и стационарных электроприемников.
7.1.7. Квартирный щиток — групповой щиток, установленный в квартире и предназначенный для присоединения сети, питающей светильники, штепсельные розетки и стационарные электроприемники квартиры.
7.1.8. Этажный распределительный щиток — щиток, установленный на этажах жилых домов и предназначенный для питания квартир или квартирных щитков.